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Abstract

Objectives—To test the hypothesis that higher blood levels of neurotrophic proteins (proteins 

that support neuronal survival and function) in the first 2 weeks of life are associated with a lower 

risk of cognitive impairment at 10 years.

Study design—We evaluated 812 10-year-old children with neonatal blood specimens enrolled 

in the multicenter prospective Extremely Low Gestational Age Newborn Study, assessing 22 blood 

proteins collected on 3 days over the first 2 weeks of life. Using latent profile analysis, we derived 

a cognitive function level based on standardized cognitive and executive function tests. We defined 

high exposure as the top quartile neurotrophic protein blood level on ≥2 days either for ≥4 proteins 
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or for a specific cluster of neurotrophic proteins (defined by latent class analysis). Multinomial 

logistic regression analyzed associations between high exposures and cognitive impairment.

Results—Controlling for the effects of inflammatory proteins, persistently elevated blood levels 

of ≥4 neurotrophic proteins were associated with reduced risk of moderate (OR, 0.35; 95% CI, 

0.18–0.67) and severe cognitive impairment (OR, 0.22; 95% CI, 0.09–0.53). Children with a 

cluster of elevated proteins including angiopoietin 1, brain-derived neurotrophic factor, and 

regulated upon activation, normal T-cell expressed, and secreted had a reduced risk of adverse 

cognitive outcomes (OR range, 0.31–0.6). The risk for moderate to severe cognitive impairment 

was least with 0–1 inflammatory and >4 neurotrophic proteins.

Conclusions—Persisting elevations of circulating neurotrophic proteins during the first 2 weeks 

of life are associated with lowered risk of impaired cognition at 10 years of age, controlling for 

increases in inflammatory proteins.

Advances in neonatal intensive care have increased the survival of extremely preterm 

children born at <28 weeks of gestation.1 Increased survival rates have not been 

accompanied by similar improvements in neurodevelopmental outcomes, and one-quarter of 

survivors have cognitive impairment.2,3 Reduction of the risk of cognitive impairment 

depends on an improved understanding of its etiology.

The Extremely Low Gestational Age Newborn (ELGAN) Study was designed to test the 

hypothesis that perinatal inflammation is associated with persisting brain structural and 

functional disorders. In the ELGAN cohort of about 1000 children born at <28 weeks of 

gestation, neonatal elevations of specific inflammation-associated protein biomarkers in 

blood robustly predicted cognitive impairment at 2 years of age.4,5 These indicators of 

neonatal systemic inflammation also were associated with impaired cognition at 10 years of 

age.6

In the ELGAN Study, blood samples were taken in the first 2 weeks of life and we measured 

levels of neurotrophic proteins, including growth factors, neurotrophins, and angiotrophins 

that might influence developmental outcomes.7,8 These proteins support the growth, 

survival, and differentiation of developing neurons. Lower levels of these proteins may 

signal less resilience against inflammation-associated injury and higher levels may prevent 

damage.9 Inflammation-related proteins are associated with cognitive impairment, and 

neurotrophic proteins may be associated with better cognitive outcomes, but elevations 

within these 2 protein families that operate in opposite directions frequently occur 

simultaneously. We, therefore, tested the hypothesis that higher blood levels of neurotrophic 

proteins measured in the first 2 weeks of life would be associated with a lesser risk of 

cognitive impairment at 10 years of age, controlling for the presence of inflammation-

associated proteins.

Methods

The ELGAN Study is a multicenter, observational study of the risk of structural and 

functional neurologic disorders in extremely preterm infants. From 2002 to 2004, women 

delivering at <28 weeks of gestation were asked for consent to enroll their child into the 
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study. This analysis includes 812 children (a subset of the surviving 1200 study participants) 

who had ≥2 sets of neonatal blood samples for proteins and were evaluated at 10 years of 

age (Figure 1; available at www.jpeds.com). This study was approved by the institutional 

review boards of all participating institutions and informed consent was obtained from all 

participants.

Cognitive Assessment and Derivation of Levels of Function

Child assessments included the full-scale IQ from the School-Age Differential Ability 

Scales–II Verbal and Nonverbal Reasoning scales10 and executive function (EF) (from the 

School-Age Differential Ability Scales–II Verbal and Nonverbal Reasoning scales and the 

Developmental NEeuroPSYchological Assessment, 2nd Edition11).

Even though the development and maturation of neural circuits underlying aspects of IQ and 

EF differ from each other,12 both can be reliably measured by 10 years of age.13 As 

previously reported, we evaluated cognitive outcomes using latent class analysis (LCA) 

classifications, which represented both IQ and EF abilities, to provide a better predictor of 

adaptive outcomes, such as academic success, than IQ alone.2,14 Children were classified 

into their most likely latent class for analysis. With LCA, we identified 4 subgroups of 

children in our cohort corresponding with overall cognitive functioning that was normal 

(34% of cohort; normal mean IQ and EF scores), low-normal (41%; mean IQ and EF scores 

ranging from 0.5 to 1.5 SDs below norm), moderately impaired (17%; mean IQ and EF 

measures from 1.5 to 2.5 SDs below norm), and severely impaired (8%; mean IQ and EF 

measures from 2.5 to 4.0 SDs below norm).2

Assessment of Inflammation and Neutrophic Proteins

Blood Protein Measurements.—Drops of whole blood were collected on postnatal days 

1 (range, 1–3 days), 7 (range, 5–8 days), and 14 (range, 12–15 days).15,16 Protein 

concentration quartiles were normalized for gestational age and day of collection.17 Because 

single day elevations of proteins are not as strongly associated with cognitive outcomes as 

are persistent elevations,6 we defined protein concentration elevation as being in the highest 

quartile on ≥2 of 3 measures obtained.

Identification of Clusters of Neurotrophic and Inflammation-Associated 
Proteins with LCA.—The specific neurotrophic proteins evaluated are listed in Table I 

(available at www.jpeds.com). Given that the blood levels of neurotrophic proteins under 

study might correlate with one another, we conducted separate LCA analyses on each 

postnatal day, fitting models with 2–5 classes and choosing an appropriate model based on 

fit statistics, entropy, interpretability, and consistency of results across days (Table II; 

available at www.jpeds.com). Analyses consistently identified 3 subgroups of children with 

similar patterns of neurotrophin elevations. Based on these analyses, we categorized children 

into 3 distinct subgroups (Table III; available at www.jpeds.com). The neurotrophic-related 

protein group (NRG) 1 had ≤2 elevated proteins; NRG2 had elevations of ≥3 proteins 

including ≥2 of the following 3 neurotrophic proteins: regulated upon activation, normal T-

cell expressed, and secreted (RANTES), brain-derived neurotrophic factor (BDNF), and 
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angiopoietin 1 (Ang-1); and NRG3 had low levels on ≥2 of 3 NRG2 proteins, RANTES, 

BDNF, and Ang-1, but elevated levels of ≥3 of the other neurotrophic proteins (Table III).

The analyses also included values for 8 inflammation-related proteins obtained at the same 3 

time points as the neurotrophic proteins. These inflammatory-related proteins have been 

associated with structural and functional neurological outcomes in previous ELGAN Study 

analyses Table I.4,18,19 As with the neurotrophic proteins, we conducted LCA on postnatal 

days 1, 7, and 14 and found that a 3-class solution was most consistent across all 3 days 

(Table II). Based on these analyses, we identified 3 distinct subgroups of children: 

inflammatory group (IRG) 2 had ≥3 elevated proteins that included elevation of either C-

reactive protein (CRP) or serum amyloid A (SAA). IRG3 had normal CRP and SAA but had 

elevations of ≥3 other inflammatory proteins (Table III).

We a priori operationally defined neurotrophic protein exposure in 2 ways. First, we 

considered the number of sustained elevated inflammatory and sustained elevated 

neurotrophic proteins as measures of the breadth of inflammatory or neurotrophic exposure 

(0–1 proteins [referent group], 2–3 proteins, >4 proteins). Second, we considered the at-risk 

subgroups of children based on a pattern of elevated proteins derived from LCA.

Statistical Analyses

We tested the hypothesis that elevation of neurotrophic proteins in the first 2 weeks of life is 

associated with a decreased risk of cognitive impairment. Because high concentrations of 

inflammation-related proteins can prompt high concentrations of putative neurotrophic 

proteins,20–29 in our analyses we controlled for elevations of inflammatory proteins when 

evaluating risks associated with neurotrophic proteins.

Maternal and infant characteristics of the study sample were compared across neurotrophin 

risk groups with a χ2 test; characteristics associated with risk groups at P < .05 were 

considered potential confounders. Multivariable multinomial logistic regression models were 

used to examine adjusted associations of elevated inflammatory and neurotrophic proteins 

with cognitive impairment at 10 years of age. All analyses controlled child sex and maternal 

education.3,30 Secondary analyses also controlled for additional potential confounding by 

variables found to be associated with either neurotrophic or inflammatory protein exposure 

in preliminary analyses. Adjusted associations based on these logistic regression models 

were described with ORs and 95% CIs. In secondary analyses, variables found to be 

associated with either neurotrophic or inflammatory protein exposure were examined for 

confounding and controlled for if the adjusted ORs for neurotrophic or inflammatory 

proteins changed by ≥10%. Secondary analyses also examined the association between 

number of neurotrophic and inflammatory proteins and IQ alone, categorized as <70, 70–85, 

and >85.

Results

Demographic Characteristics and Protein Elevations

Maternal and child characteristics, including maternal body mass index and maternal 

smoking status, did not significantly differ across neurotrophic protein risk groups of 
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children (P > .10), with the exception of birth weight z-score (P < .05) (Table IV). Children 

with a greater number of elevated neurotrophic proteins were more likely to have elevated 

inflammatory proteins (P < .001). For example, 32% of children with >4 elevated 

neurotrophic proteins had >4 elevated inflammatory proteins, but only 4% of children with 

0–1 elevated neurotrophic proteins had >4 elevated inflammatory proteins. Elevated 

inflammatory proteins were associated with maternal race, marital status, smoking during 

pregnancy, and birth weight z-score category (data not shown). Among these risk factors, 

only maternal race was found to confound the association between elevated proteins and 

cognitive impairment in multivariable analyses described elsewhere in this article.

Patterns of Inflammatory and Neurotrophic Protein Elevations

In each of 3 strata defined in terms of the number of elevations of inflammatory proteins 

(columns), the risk of cognitive impairment decreased as the number of elevations of 

neurotrophic proteins increased (Figure 2). For example, for children with >4 elevated 

inflammatory proteins, the percent with cognitive impairment decreased from 56.3% to 

22.0% as the number of neurotrophic proteins increased from 0 to 1 to >4 (OR, 0.22; 95% 

CI, 0.07–0.70). Similarly, for children with 0–1 elevated inflammatory proteins, the percent 

with cognitive impairment decreased from 22.2% to 10.0% (OR, 0.39; 95% CI, 0.17–0.89). 

In the 3 strata defined by the number of elevations of neurotrophic proteins, the risk of 

cognitive impairment increased with elevated number of inflammatory proteins. Multiple 

logistic regression analysis of these data (Table IV) show significant effects of both 

neurotrophic (P = .004) and inflammatory proteins (P < .001), with no significant 

multiplicative interaction (P = .670). The risk for moderate or severe cognitive impairment 

was greatest in the presence of >4 inflammatory and 0–1 neurotrophic proteins (56%) and 

least when there were 0–1 inflammatory and >4 neurotrophic proteins (10%).

Associations between Protein Elevations and Cognitive Impairment

Adjusting for the number of elevations of inflammatory proteins, elevation of >4 

neurotrophic proteins was associated with a reduced risk of moderate and severe cognitive 

impairment (Table V). Elevation of 2–3 neurotrophic proteins also was associated with 

decreased risk of cognitive impairment in the severely impaired and low normal groups of 

children. Secondary analyses examining confounding by other maternal and infant 

characteristics identified race as a confounder; associations of >4 elevated inflammatory and 

neurotrophic proteins with severe and moderate cognitive impairment were somewhat 

attenuated, but remained significant after additionally controlling for race. Secondary 

analyses using IQ alone as the outcome showed similar associations with elevated proteins. 

For IQ categories, both 2–3 and >4 elevated inflammatory proteins significantly increased 

the odds of an IQ of <70, but not an IQ of 70–85, whereas both 2–3 and >4 elevated 

neurotrophic proteins were associated with lower odds of an IQ of <70, but not an IQ of 70–

85 (data not shown).

The latent class category resulting from the analysis of neurotrophic proteins that was 

characterized by elevated proteins, including 2 of 3 proteins (RANTES, BDNF, or Ang-1), 

was associated with a lesser risk of cognitive impairment for the severely impaired, 

moderately impaired, and low-normal categories (Table VI). The latent class with elevated 
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levels of other neurotrophic proteins, but not RANTES, BDNF, and Ang-1, was not 

associated with cognitive outcome (Table VI). In LCA-defined inflammation subgroups of 

children, IRG2 (pre-dominantly SAA and CRP elevations) was significantly associated with 

all 3 adverse cognitive outcome groups relative to the reference group, but IRG3 (≥3 

proteins other than SAA and CRP) was significantly associated with increased risk in the 

moderately impaired children only.

There were no significant interactions (P > .65) between neurotrophic and inflammatory 

proteins related to cognitive outcomes. Adjustments for birth weight z-score, the only 

demographic or birth characteristic associated with the neurotrophic protein LCA groups of 

children, did not substantively change the association between neurotrophic protein 

elevations and cognitive outcome.

Discussion

Whereas the sustained presence of inflammation-related proteins in the blood during the first 

2 weeks after birth was associated with adverse cognitive outcomes at 10 years of age, 

increased levels of circulating neurotrophic proteins were associated with a lesser risk of 

cognitive impairment. The lower risk for cognitive impairment associated with elevation of 

neurotrophic proteins was evident whether indexed by the number of elevated proteins or by 

a cluster of neurotrophic proteins derived from LCA that included RANTES, BDNF, and 

Ang-1. With both approaches, the association was stronger with severe compared with 

moderate cognitive impairment.

We examined the association between elevated neurotrophic proteins in the first weeks of 

life with cognitive abilities, adjusting for inflammation. This approach was undertaken based 

on the notion that inflammation-related and neurotrophic proteins correlate with each other 

but seem to influence the risk of cognitive impairment in opposite directions. That 

inflammation-related and neurotrophic proteins are both elevated more often than expected 

by chance, suggests ≥2 possible underlying biological models. In 1 model, inflammatory and 

neurotrophic protein elevations have a common initiator, prompting an inflammatory 

cascade as well as enhancing production of neurotrophic proteins. A number of in vitro 

neonatal models suggest that BDNF and other neurotrophins are decreased rather than 

increased when exposed to a lipopolysaccharide stimulus, suggesting that this mechanism is 

less likely.24 A second, more likely model invokes neurotrophic protein elevations as a 

consequence of inflammation, possibly as a nonspecific upregulation of many proteins or an 

attempt of the body to”downregulate” inflammation.

As part of our evaluation of 12 proteins thought to have neurotrophic properties, we sought 

to understand whether these neurotrophic proteins fluctuated independently or in concert. 

LCA identified 3 patterns of elevated neurotrophic protein values. One group of children, 

NRG2, with elevations of RANTES, BDNF, and Ang-1, were least at risk for adverse 

cognitive outcomes. Support for a neuroprotective role for RANTES, BDNF, and Ang-1 

includes the association of RANTES with a decreased risk of attention deficit hyperactivity 

disorder in our cohort.31 Also, in preterm infants, higher BDNF values are associated with 

lower odds of failing developmental milestones32 and developing retinopathy of prematurity.
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33 In rodent brain ischemia and head trauma models, BDNF also is associated with 

neuroprotective effects.34,35 Ang-1 in experimental models seems to ameliorate the impact 

of cerebral ischemia and stroke in rats.36,37

We found no interaction between elevated neurotrophic and inflammatory proteins with 

respect to cognitive risk. This finding implies that elevated neurotrophic proteins are 

protective against cognitive impairment regardless of the level of inflammatory proteins, 

rather than only providing protection in the presence of elevated inflammatory proteins. 

However, statistical tests for interaction have lower power, and this null result should be 

interpreted cautiously.

We conceptualized our outcome as cognitive impairment and chose to summarize IQ and EF 

variables using LCA, which identified subgroups of children by degree of cognitive 

impairment. Other approaches to identifying impairment categories, such as categorizing 

impairment based on IQ and EF z-scores or a factor analysis approach, would also be valid. 

Similarly, because severity and breadth of inflammatory exposure seems to be a critical 

predictor of outcome,6 we conceptualized inflammatory and neurotrophic protein exposure 

as representing exposure categories and used LCA to define the exposure categories.

Brain development in the extremely preterm infant involves dynamic and critical processes 

that are distinguishable from those occurring in the more mature brain, and many of these 

developmental processes seem to be adversely affected in several ways. First, to a greater 

extent than in the term-born infant’s brain, the immature brain demonstrates vigorous 

dendritic and axonal growth (particularly growth cone proliferation), as well as 

myelinogenesis and angiogenesis.38 Second, developing preoligodendrocytes and subplate 

neurons at 24–32 weeks of gestation are extremely vulnerable to physiological perturbations.
39 Third, most programmed cell death (apoptosis) in neuronal populations occurs prenatally, 

whereas cell death in glia populations as well as production and pruning of connections are 

largely postnatal events.40 Fourth, to a greater extent than infants born at term, preterm 

infants encounter a host of potentially prenatal, perinatal, and postnatal harmful exposures, 

including inflammatory processes that frequently precipitate early delivery or occur in the 

context of postnatal illnesses, such as chronic lung disease, necrotizing enterocolitis, and 

sepsis.38,41 Fifth, preterm infants may have reduced capacities to synthesize proteins that 

promote cell growth or survival in the amounts needed for normal development,42 

particularly when exposed to adverse stresses, such as inflammation and infection, which 

occur commonly in extremely preterm infants.9,43

Our finding that the presence of proteins with neurotrophic properties reduces risks for 

adverse cognitive impairment support the notion that such proteins can stimulate 

oligodendrocyte progenitor cell proliferation,44 induce oligodendrocyte progenitors “to 

undergo continuous self-renewal,”45 minimize oligodendrocyte progenitor and neuronal 

apoptosis,46,47 and rescue motor neurons from axotomy.48–50

These results suggest that there are complex determinants of adverse outcomes involving an 

interplay between imposed risks and host resistance and resilience. Both risk and protective 

factors likely are under the control of genetic and local environmental or epigenetic 
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influences, which may either enhance or dampen inflammatory or neurotrophic and 

neuroprotective mechanisms.51 For example, inflammatory-promoting clinical conditions 

associated with low gestational age (such as chorioamnionitis, chronic lung disease [or 

protracted intubation],52 necrotizing enterocolitis,53 and sepsis52) may contribute to 

heightened adverse outcome risk. In contrast, antenatal exposure to magnesium,54 

socioeconomic advantage,30 or exposures that enhance neurotrophic concentrations may 

positively influence the balance between risk and neuroprotection. Calabrese et al and 

Dhobale reviewed the effects of neurotrophic proteins in the perinatal period and noted that 

elevation of certain neurotrophins, including BDNF, are associated with maternal 

preeclampsia and fetal growth restriction, whereas neurotrophin-3 is diminished in the 

presence of placental inflammation.24,55 Further complicating our understanding of 

determinants of outcome is the observation that many of the proteins we characterize as 

either inflammatory or having neurotrophic properties may be pleiotrophic, functioning to 

enhance risk in some contexts and to protect brain function in others. For example, Ang-1 

seems to have neurotrophic properties in these analyses, yet under other circumstances has 

proinflammatory characteristics.56,57 Similar data exist for BDNF,58–60 basic fibroblast 

growth factor,61 insulin-like growth factor-1,62 and erythropoietin.63,64

Our findings complement the notion that exogenously administered neurotrophic proteins 

might be therapeutic,65–69 lending support to growth factor clinical trials aimed at 

benefitting cognitive outcome,70–72 including one involving extremely preterm infants.73 

The next steps should include analyses that evaluate the role that antecedent prepregnancy, 

prenatal, and postnatal characteristics have in modulating inflammation-associated and 

neurotrophic proteins, and to explore epigenetic mechanisms that likely play a role in such 

modulations.

Our study has several strengths. We included a large number of infants, collected our data 

prospectively, and had only modest attrition across 10 years of follow-up. Examiners at 2 

and 10 years were not aware of the medical histories of the children they examined, and our 

analyses of protein data are of high quality, with high content validity.16,74,75

Although we sampled a wide range of inflammation-associated proteins known to be 

associated with neurologic damage, and a number of neurotrophic proteins, we did not 

evaluate all known inflammation-associated or neurotrophic proteins. We selected proteins 

on the basis of likely involvement in the fetal or neonatal inflammatory response or brain-

protective properties, and the accuracy with which they could be measured reliably in whole 

blood spots using the Meso Scale Discovery and the Luminex multiplex platforms. Finally, 

rather than reporting absolute protein concentration values, we used a distribution-based 

definition of protein elevation based on gestational age, postnatal day, and the interval 

between processing blood samples, because normal values are not known, and values appear 

to be influenced by these factors.

We conclude that elevated levels of circulating neurotrophic proteins in the first 2 weeks 

after birth seem to decrease the risk of cognitive impairment at 10 of age years in children 

born extremely preterm. ■
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Glossary

ANG Angiopoietin
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CRP C-reactive protein

EF Executive function

ELGAN Extremely Low Gestational Age Newborn

IRG Inflammatory risk group

LCA Latent class analysis

NRG Neurotrophin group
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RANTES Regulated upon activation, normal T-cell expressed, and secreted

SAA Serum amyloid A
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Figure 1. 
Study enrollment flow chart.
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Figure 2. 
Percent of children with moderate or severe cognitive impairment as a function of the 

number of elevated neurotrophic and inflammatory proteins.
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